import sumtyme
# Initialise the sumtyme client with the provided API key from your dashboard
client = sumtyme.client(apikey='your-api-key-here')
api_outputs = [
("https://raw.githubusercontent.com/sumteam/data_store/main/GLD/api_outputs/GLD_1s_reactive_outputs.csv", '1s'),
("https://raw.githubusercontent.com/sumteam/data_store/main/GLD/api_outputs/GLD_5s_reactive_outputs.csv", '5s'),
("https://raw.githubusercontent.com/sumteam/data_store/main/GLD/api_outputs/GLD_15s_reactive_outputs.csv", '15s'),
("https://raw.githubusercontent.com/sumteam/data_store/main/GLD/api_outputs/GLD_30s_reactive_outputs.csv", '30s'),
("https://raw.githubusercontent.com/sumteam/data_store/main/GLD/api_outputs/GLD_1m_reactive_outputs.csv", '1m'),
("https://raw.githubusercontent.com/sumteam/data_store/main/GLD/api_outputs/GLD_2m_reactive_outputs.csv", '2m'),
("https://raw.githubusercontent.com/sumteam/data_store/main/GLD/api_outputs/GLD_5m_reactive_outputs.csv", '5m'),
("https://raw.githubusercontent.com/sumteam/data_store/main/GLD/api_outputs/GLD_10m_reactive_outputs.csv", '10m'),
]
# Execute Causal Mapping
# initial_chain_starts: Specific datetime where a chain first starts based on observed timeframes
# causal_chain_details: A detailed breakdown of how the signal moved across different timeframes.
initial_chain_starts, causal_chain_details = client.map_causal_chains(api_outputs=scales)
Output results for review
print("--- Chain Inception Points ---")
print(initial_chain_starts)
print("\n--- Detailed Causal Path Analysis ---")
print(causal_chain_details])